«Окольцованные» планеты

Вопрос: Сколько планет в солнечной системе имеют кольца? Как и почему они образовались? Какое значение они имеют для планет?

Ответ: Открытые в XVII в. кольца Сатурна постоянно будоражили воображение исследователей своей уникальной формой. Кольца Сатурна исследовали такие блестящие астрономы, механики и математики, как Г. Галилей, X. Гюйгенс, Ж. Д. Кассини, П. С. де Лаплас, Дж. К. Максвелл, А. Пуанкаре. Кант был первым, кто предсказал существование тонкой структуры колец Сатурна. Пользуясь своей моделью протопланетного облака, он представлял себе кольцо в виде плоского диска из сталкивающихся частиц, вращающихся дифференциально вокруг планеты по закону Кеплера. Именно дифференциальное вращение, согласно Канту, является причиной расслоения диска на серию тонких колечек. Позднее П. С. де Лаплас доказал неустойчивость твердого широкого кольца. В середине прошлого века многие астрономы (Вика в Риме, Бонд в США, Струве в России, Доуес и Лассель в Англии) обнаружили всего десять колечек вокруг Сатурна. Выдающийся вклад в исследование устойчивости колец Сатурна внес в это же время Дж. К. Максвелл, получивший премию Адамса за труд, в котором он показал, что такие узкие кольца также неустойчивы и будут падать на планету. И хотя вывод Maксвелла о падении гипотетического сплошного ледового кольца на планету был неправильным (такое кольцо гораздо раньше должно развалиться на куски), следствие из него -- о метеорном строении колец Сатурна -- оказалось верным. Так, к концу XIX в. гипотеза метеорного строения колец Сатурна, высказанная впервые Ж. Д. Кассини, получила теоретическое, а в 1893 г. -- н наблюдательное подтверждение в работах Дж. Килера и А.А. Белопольского, измеривших скорости дифференциального вращения колец.

В течение XX в., шло постепенное накопление новых данных о планетных кольцах: получены оценки размеров и концентрации частиц в кольцах Сатурна, спектральным анализом установлено, что кольца -- ледяные, открыто загадочное явление азимутальной переменности яркости колец Сатурна. Размеренный темп научной деятельности сменился бурным подъемом всеобщего интереса к планетным кольцам в конце семидесятых годов, когда 10 марта 1977 г. несколькими исследовательскими группами независимо были открыты узкие и далеко отстоящие друг от друга угольночерные кольца Урана. Открытие было сделано совершенно случайно, когда, готовя аппаратуру для исследования параметров атмосферы Урана методом покрытия звезды и заранее настроив приборы, исследователи обнаружили короткие затмения при подходе звезды к планете и при ее удалении. Наилучшие снимки получились с помощью телескопа летающей Койперовской обсерватории.

Через два года -- 4 марта 1979 г. американский межпланетный аппарат «Вояджер-1» обнаружил прозрачные каменные кольца и вокруг Юпитера. В начале 80-х годов кольца Сатурна исследовались наиболее интенсивно. В их окрестности работала серия американских космических аппаратов: "Пионер-11" (октябрь 1979 г.), "Вояджер-1" (ноябрь 1980 г.), "Вояджер-2" (август 1981 г.). В январе 1986 г. "Вояджер-2" исследовал кольца Урана. В августе 1989 г. этот аппарат встретился с Нептуном, вокруг которого несколько лет назад методом покрытия звезды были обнаружены незамкнутые кольца (или "дуги"). "Вояджер-2" уточнил земные наблюдения: «дуги» оказались более плотными частями замкнутых колец.

На сегодняшний день из удаленных планет только у Полутона не обнаружены кольца. Как ни странно, эпоха «великих географических открытий» в Солнечной системе еще далека от завершения: совсем недавно были открыты новые спутники Урана, а с помощью «Телескопа Хаббла» удалось получить четкую фотографию Плутона.

Фактически, за последние годы был открыт и изучен новый класс объектов Солнечной системы. Планетные кольца оказались обязательным элементом и закономерным явлением в спутниковых системах планет-гигантов, естественно, что обилие экспериментального материала не могло не вызвать интенсивного развития теоретических моделей. Это не просто интерес к новым астрономическим объектам. Все большее распространение получает мнение, что планетные кольца -- ключ к пониманию космогонии всей Солнечной системы. Ведь кольца на сегодняшний день являются единственными, доступными для детального изучения, представителями дифференциально вращающихся дисков неупругих частиц. Исследование таких дисковых систем имеет принципиальную важность для космогонии, так как на протостадии это самый распространенный тип динамической системы (протопланетное облако, протоспутниковые диски, протокольца планет). К этому же классу объектов нужно отнести и протопланетные облака вокруг других звезд, аккреционные диски в системах двойных звезд, галактические и протогалактические диски. Таким образом, планетные кольца предоставляют уникальную возможность получить важнейшую информацию о коллективных и других процeccax, протекавших на стадии образования планет и Солнечной системы.

Перечислим основные проблемы физики планетных колец:

Почему существуют планетные кольца? Классические модели формирования колец предполагали, что кольца -- это область приливного разрушения крупных тел. Но после полетов «Вояджеров» стало ясно, что для разрушения частиц наблюдаемых размеров <10 м) приливные силы слишком слабы. Вопрос о причинах существования колец оказался прямо связан с механическими характеристиками типичной частицы.

Что вызвало расслоение колец Сатурна? Наблюдаемая иерархическая структура колец Сатурна составлена по принципу «матрешки»: широкие ~1000 км кольца состоят из системы более узких ~100 км колец и т.д. Распространенное мнение, что расслоение колец Сатурна связано только с неустойчивостью отрицательной диффузии, противоречит наблюдениям -- данная неустойчивость может вызывать образование только самых узких (в сотни метров) колечек в достаточно плотных частях диска.

Как образовались и почему не разрушаются кольца Урана? Наиболее популярна гипотеза о том, что узкие, эллиптические кольца Урана сформировались и сохраняют стабильность, благодаря двум спутникам-"пастухам" по краям каждого кольца. Однако "Вояджер-2" в 1986 г. не обнаружил между кольцами Урана столь необходимых для этой гипотезы спутников-"пастухов". При этом данные "Вояджера-2" подтвердили альтернативную гипотезу о резонансной природе колец Урана. В настоящее время в физике планетных колец существует большое число моделей и гипотез, часто взаимоисключающих друг друга. Поэтому представить единую картину происхождения и динамики планетных колец довольно трудно. Например, ряд исследователей устойчивости планетных колец исходит из модели гладкой и весьма упругой ледяной частицы, не затрагивая при этом проблемы существования колец. Космогонисты в свою очередь рассматривают в качестве типичной частицы колец чрезвычайно эфемерное образование (в 10 тысяч раз менее прочное, чем скопление самого пушистого земного снега), не задумываясь о том, как будет «работать» такая непрочная частица в других теоретических моделях.

Для того, чтобы дать физически цельную картину планетных колец, критически исследуя и альтернативные решения ряда проблем, приходится обращаться к самым различным методам и областям науки: к небесной механике и физике льда и снега, к теории удара и кинетической теории газов, к теории неустойчивостей и физике плазмы.

Солнечная система Небесные тела Вселенная Космология